Preprint

UNDERSTANDING NEURAL ARCHITECTURE SEARCH
BY ITS ARCHITECTURE PARAMETERS

Nicholas Roberts, Yingyu Liang, Frederic Sala
University of Wisconsin-Madison
{nickllroberts, yliang, fredsala}l@cs.wisc.edu

ABSTRACT

Neural Architecture Search (NAS) has shown promising empirical results as an
AutoML technique for accelerating the design process of of deep neural networks.
Specifically, NAS with weight-sharing is a popular and state-of-the-art family of
NAS algorithms which simultaneously optimize multiple architectures through
the use of parameter sharing. In this work, we make initial steps toward a theoret-
ical understanding of the properties of the architecture parameters of NAS with
weight-sharing — a crucial consideration when deriving a final discrete architecture
post-search. Prior theoretical work on NAS with weight-sharing studies the gener-
alization ability of weight-sharing under bilevel optimization and ignores practical
desiderata of the architecture parameters themselves: (i) architecture parameters
for a given layer are usually constrained to the simplex and (ii) search spaces are
typically discrete, so a discrete architecture is derived from the mixture parameters
post-search by taking the arg max. In this work, we use the setting of a previous
analysis of activation function search using weight-sharing in two-layer networks
to study the behavior of simplex-constrained architecture parameters. We find that
in a search space of two activation functions, weight-sharing recovers architecture
parameters that discretize to the optimal final architecture in the discrete search
space. In a discrete search space of three or more activation functions, we derive
a sufficient conditions for the same behavior to hold. This in turn gives rise to
an initial theoretical understanding of arg max discretization and for architecture
ranking.

Weight-Sharing, Neural Architecture Search, AutoML

1 INTRODUCTION

The design of deep neural network architectures for a given problem requires a significant investment
in compute resources, domain experts, and trial-and-error. The field of automated machine learning
(AutoML) aims to ease the burden of these types of investments by automating various aspects of
the machine learning pipeline; in particular, Neural Architecture Search (NAS) has shown to be
a promising direction in AutoML toward automating the neural network design process. Weight-
sharing is a popular family of NAS algorithms which involves training all architectures in a NAS
search space simultaneously while sharing parameters between them (Pham et al.}2018). NAS with
weight-sharing has continued to demonstrate state-of-the-art empirical results on standard image
classification and language tasks (Liu et al.,2019; |Li & Talwalkar, [2020; [Li et al., 2021)), as well as
in under-explored domains which can enjoy an even greater potential benefit from this line of work
(Roberts et al., [2021}).

Recently, theorists have made progress toward understanding generalization in NAS with weight-
sharing (Khodak et al.l [2020; |Oymak et al., 2021), though connections to the discretization and
ranking properties of weight-sharing methods remain theoretically under-studied. In this work, we
theoretically investigate the properties of the architecture parameters after search and their con-
nections to discretization. We use a refinement of the problem setting of |Oymak et al.| (2021)—
activation function selection for two-layer networks. The setting of |Oymak et al.| (2021) does not
impose realistic structure on the architecture parameters, whereas weight-sharing methods typically
constrain the architecture parameters of each layer to the simplex as a convex relaxation of the other-

Preprint

wise discrete search space. We show that these added assumptions yield sufficient conditions under
which the architecture obtained by evaluating every discrete architecture in the search space using
the shared weights and the architecture obtained by discretizing the architecture parameters are the
same.

2 RELATED WORK

Neural Architecture Search with Weight-Sharing NAS with Weight-Sharing was first intro-
duced by Pham et al.| (2018) with ENAS, which learns a controller model trained using policy gra-
dients to modify a child network with parameter shared between architecture choices. Soon after,
DARTS emerged as the canonical state-of-the-art weight-sharing method which posed a continuous
relaxation to the a bilevel formulation of the NAS problem, which could be learned end-to-end using
gradient-based optimization of both the shared-weights as well as the architecture parameters (Liu
et al., |2019). In particular, they posed NAS as a search problem over computation graphs, where
each edge of the computation graph corresponds to a decision between several layer choices, and
each node represents a state or hidden representation in network. At each edge of the computation
graph, continuous relaxation of the NAS problem is formulated as a learnable convex combination
of the outputs of each of the layer choices for that edge, which is depicted in Figure[I] In DARTS,
this learnable convex combination is parameterized by a softmax activation applied to a vector of
architecture parameters. The bilevel optimization procedure in DARTS involves alternately apply-
ing gradient updates to the architecture parameters using the validation set and applying gradient
steps to the shared weights using the training set. After the bilevel training procedure terminates,
a discrete architecture is derived by taking the arg max over the architecture parameters at each
edge, at which point this architecture is re-trained from scratch. Later, [Li et al| (2021)) proposed
GAEA, which replaces the softmax parameterization of the architecture parameters with parameters
lying directly on the simplex and updated using exponentiated gradient descent. This leads to faster
convergence to sparse architecture parameters and improved empirical performance over DARTS
and other methods. Beyond selecting the best architecture, an important consideration for resource-
constrained NAS is whether a search method can rank the architectures in its search space by their
generalization performance. The goal of doing this would be to identify the best architecture subject
to certain architecture constraints that might be difficult to encode into the search space a priori. De-
spite the success of NAS with weight-sharing, some have found that weight-sharing methods lead
to poor architecture selection and poor ranking performance, i.e., the ranking given by the relative
performance of each architecture evaluated using the shared weights is, in practice, different from
the ranking induced by training each architecture from scratch (Yu et al., [2020).

Edge e

3x3 Con\a [5X5 Poo) (Sklp

Input

Figure 1: A simplified computation graph used in weight-sharing methods. Each edge is parameter-
ized as a convex combination of the outputs of each layer choice at that edge. Here, the architecture
parameters for edge e are the mixture weights o = {a; . }?_; € A% and A? denotes the unit simplex
with 3 vertices.

Preprint

Weight-sharing theory Recently, NAS with weight-sharing has garnered interest from the learn-
ing theory community. In particular, Khodak et al. (2020) proposes a simple setting for the the-
oretical analysis of weight-sharing: feature map selection for single-layer networks. In this set-
ting, they provide generalization bounds on weight-sharing under the typical bilevel optimization
scheme as well as a sample complexity justification for the use of bilevel optimization as opposed
to single-level ERM. More recently, (Oymak et al.| (2021) proposed a multi-layer setting to study
weight sharing for the problem of activation function selection, similarly under bilevel optimization.
They argue that the lower-level optimization problem of optimizing the shared weights can always
achieve zero training loss due to overparameterization, which itself motivates the use and study of
generalization in weight-sharing with bilevel optimization. They obtain generalization bounds for
their setting in the lazy-training regime and show that the search algorithm itself identifies the best
model/architecture pair in the search space.

3 PRELIMINARIES, PROBLEM FORMULATION, AND CONTEXT

Data setting We will use a similar data setting as|Oymak et al.|(2021), but we make an additional
assumption about the data generating process. Denote (x,y) ~ D where x € X and y = G(z) €)
as the data distribution of input features and labels, where G is a deterministic labeling function.
Define the population risk as £(f) = Ep[¢(y, f(x))] for a given loss function ¢ and hypothesis
f: X =)

Hypothesis class and optimization specifics In this work, we impose more structure on the ar-
chitecture parameters than|Oymak et al.[|(2021), who allows the space of architecture parameters to
be any subset of the unit /; ball. Denote our architecture parameter vector as o € A"~1 C R"
where A1 is the unit simplex with h vertices, which is indeed a subset of the unit ¢; ball, so the
corresponding results of(Oymak et al.|(2021) still hold in our setting.

We will use the same two-layer activation function selection setting as|Oymak et al.|(2021). Specif-
ically, for some activation function o, we consider hypotheses of the form

Fo={fo-, W)|fs(x, W) = v'0(Wx),x € RFE, W € RF*? v € RY}.

Denote our convex combination of h activation functions using architecture parameters o as
oa(z) = Z?:l a;0;(z). Then, the extended hypothesis class over the architecture parameters
and the shared weights is denoted as F,_ . Following |Oymak et al.[(2021), we will consider binary
classification with y € {—1, +1} and population loss

L(F) = £(f,9) = 5Bl — fou (. W))?

although our results extend to real-valued labels as well.

4 A GEOMETRIC UNDERSTANDING OF ARCHITECTURE PARAMETERS

We will now summarize our main result and the assumptions needed in our analysis. We assume that
we obtain optimal shared weights W* and architecture parameters o from some bilevel optimizer.

Informal statement of the main result Our main result is stated informally as follows: for any
pair of discrete architectures given by ;, o; where L(f5,(W*)) < L(fs,(W*)), and under cer-
tain sufficient conditions on the population risks between certain continuous architectures on the
boundary of the unit simplex and the discrete architectures fo,, f5,, we have that a; < av;.

This result has several immediate practical consequences. Namely, after search, the architecture
parameters are typically discretized, i.e., the architecture f,, : k = arg max; o is obtained and re-
trained from scratch. If the sufficient conditions (which will be derived in a later subsection) do not
hold, then the discretization process might result in a potentially suboptimal architecture. Further-
more, the ability for the shared weights to rank architectures by their optimality under standalone
weights is an important consideration for resource constrained settings. In these settings, the search
space under consideration might contain architectures which do not meet some criterion for the
downstream task — e.g. constraints on the parameter count, latency considerations, or other practical

Preprint

considerations. Ranking provides a solution to this problem by allowing for the best architecture to
be selected subject to certain practical constraints. This is typically done by evaluating each discrete
architecture in the search space using the shared weights, selecting the architecture with the best
generalization performance according to the shared weights subject to the practical constraints, and
retraining the weights from scratch. Our result suggests that under sufficient conditions hold for
every pair of architectures in the ranking, the architecture parameters themselves can be examined
and ranked instead of evaluating every architecture in the discrete search space.

Required assumptions In our analysis, we make several assumptions regarding the relative opti-
mality of each of the discrete architectures, the geometry of the continuous architecture parameters
returned by search, and on the relationship between the model returned by search and the label gen-
erating process. Without loss of generality with regard to the indexing of the h activation functions
in our search space, we assume the following statement about the ordering of the population risk

(which is given by L(f,(W)) = L(f-(W),y) = %]ED[(CU — fo(x, W))?]).

Assumption 1. We have a total order on the architecture ranking with respect to the population
risk, as evaluated using the shared weights. Namely, we have

L(fou(WT)) < L(f5, (W7)) < L[5, (W) < ... < L(f5,(WT)).

Assumption [T)is mostly realistic, as it is assumed in practice that when evaluating the architecture
ranking using the shared weights, architectures will perform differently. We also require that the
architecture parameters all be nonzero. Formally, we assume the following.

Assumption 2. The architecture parameters returned by the search procedure lie on the interior of
the unit simplex o € intgn AP~

Assumption [2] is realistic and is generally assumed in practice for gradient based search methods,
which is exactly what necessitates the typical arg max discretization procedure before retraining the
final searched architecture from scratch. Finally, we make the strong assumption that the labels are
generated by some model in the extended hypothesis class F,_, and that this is the exact model
returned by the search procedure.

Assumption 3. We assume realizability. In other words, under perfect optimization, the shared
weights and architecture parameters returned by the search procedure are identical to the label
generating process, y = f,_ (x, W*).

Note that Assumption [3|is unrealistic and would somewhat defeat the purpose of post-search dis-
cretization and retraining since it would mean that the model returned by search has zero population
risk. We nonetheless make this assumption for ease of exposition. We leave removing this assump-
tion to future work. In the following subsections, we will provide formal statements and proofs of
our main result with increasing levels of generality. We begin with search spaces of two and three
activation functions to build intuition, and along the way, we will add components to obtain the
result for more generic activation function search spaces with finitely many discrete architectures.

4.1 TWO ACTIVATION FUNCTIONS

We now present a formal statement and proof of our result in the case of a search space of two
activation functions. Note that in this simplified setting, we do not require additional sufficient
conditions nor Assumption [2funtil we proceed to more general cases.

Theorem 1 (Maximum « for two activations). Let h = 2 and under Assumptions |l| and |3} let
L(for (W*)) < L(fo, (W™)), then it holds that s < ay.

Preprint

Proof. Begin with L(f,,(W*)).

L(fr (W) = SEp[(fo (x, W) — 9)?]

—
=
—

Epy [(for (6, W) = foo (x, W))?]

Bl TS

=

D [(Vor (W Tx) — v(a101 (W*Tx) + a0 (W* 'x)))?]

| = Do
&

DA [((1— Oél)VtTl(W*TX) - agvag(W*Tx))2]

©
&
o~ N

Ep. [(aavo (W Tx) — asvoy (W* x))?]
1

= aggEDX (Vo (W*Tx) — voy (W* Tx))?]

= GL(f5, (W), fo, (W)
where (1) holds by Assumption[3|and (2) holds since cc € A'. By the same argument, we have that

L(f7: (W) = 01 L(fo, (W), o, (W)).

Finally, we obtain the following
L(fo,(W7)) < L(f5,(WT))

= 3L (fo, (W), fos (W) < @ L(fo, (W), fo. (WF))
= g < OYq

as required. O

4.2 THREE ACTIVATION FUNCTIONS AND THE SIMPLEX INTERIOR FACTORIZATION

Next, we provide a formal statement and proof of the slightly more general setting of three activation
functions. In this setting, we employ a key lemma about the factorization of points on the interior of
the unit 2-simplex, and we use this to derive a sufficient condition under which the result to holds
for three activation functions.

Lemma 2 (Factorization of intgs A%). Let o € intgs A% Then oy and a3 can be expressed in
terms of (1 —) as follows:

a=(1-a1)8 a3=(1-a)(1-0)
with B € (0,1).

Proof. Beginning with as = (1 — a1)3, we have 8 = f—;l and1 - 3 = 1_1011;10‘2 = lf‘;l
which both hold because ||a|j; = 1 and a; € (0,1) Vi € {1,2,3} which are consequences of
a € intgs A2, Finally, 8 = lf‘;l = a;‘fas € (0,1) holds for the same reasons. O

Lemma [2] allows us to write all of the architecture parameters in terms of one parameter, which
admits the required factorization for our result to hold for three activation functions. Next, we
provide a statement of the sufficient condition that we will derive in Theorem

Condition 3 (f,, is sufficiently far from a convex combination of f,, and f,,). Let h = 3. Then
Jor L(f5,(W*)) < L(fs,(W?*)) and parameters 31, 32 € (0, 1),

E(fﬂl (W*)7 f3102+(1—51)03 (W*)) > ﬁ(f02 (W*)’ fﬁ20’1+(1—ﬁ2)0’3 (W*))

Intuitively, Condition [3[says that we need f,, (W™) to be far enough away in population risk from
some continuous architecture specified by architecture parameters [0, 31, (1 — 31)]" € bdgs A%
The parameters 31 and 3, in Condition [3|are obtained using their respective Lemma|2|factorizations
on vy, ag. With this, we go on to show that ConditionE]is sufficient for as < avq to hold.

Theorem 4 (Maximum « for three activations). Let h = 3 and under Assumptions|[I| P} and[3] let
L(foy (W*)) < L(f0,(W?*)). Then Condition[3|is sufficient for otz < oy to hold.

Preprint

Proof. Beginning with L(f,, (W*)), we have

L(f0r (W) = SEp(fo, (6, W) —)]
@

S0 [(6 W) = i (6, W))?)
= 3Ep. (v (W Tx)
— v(a101 (W* X) + QQGQ(W*TX) + (130'3(W*TX)))2]

= %EDX (1 = a1)vor (W Tx) — agvoe(W*Tx) — aszvas(W*x))?]

@ L (1 - ar)veos (W Tx)

2
(al),B1VO'2(W X)
— (1= ay)(1 — B1)vos(W*'x))?|

1)2§]EDX [(vor(W*Tx) = v(B102(W* %) + (1 = B1)03(W*Tx)))’]

= (1 - al)Q‘C(fzn (W*)7 fB102+(lfﬁl)03 (W*))

where (1) holds by Assumption[3|and (2) holds by Assumption[2]and Lemmal2} The same argument
leads to the following for £(f, (W*))

L(fo,(W)) = (1 = 2)*L(fos (W), fp01+(1-p2)rs (W)

Finally, we obtain the following expression

L(for (W7)) < L(f5,(W7))
= (1 - al)QE(ij (W*)a fﬁ102+(1*ﬁ1)03 (W*)) < (1 - a?)z‘c(faz (W*)a fﬁ201+(17ﬁ2)o’3 (W*))
Notice that Condition [3]implies the following

‘C(fﬂz (W*)a fﬁzal+(1—ﬁ2)a3 (W*))
E(fUl (W*)’ fﬁ102+(1*51)03 (W*»

=(l-a

(1 — Oél)Q < (1 — Oé2)2
S (1—0(2)2
= 0 < 0.

Hence Condition [3]is sufficient for as < ay. O]

4.3 BEYOND THREE ACTIVATION FUNCTIONS

We now generalize Lemma 2]to handle any finite number of architectures and provide a more general
form of Condition 3] which we derive in our generalization of Theorem []

Lemma 5 (Recursive factorization of intgn A1), Let v € intgpn A" L. ThenVi € [h]\ {1}, o
can be expressed in terms of (1 — avy) as follows

a;=(1-ai)y
with v € intgn—1 A"2,

Proof. o € intgn A"~!implies that o; € (0,1) Vi € [h], so we have

)) h
i = 13‘&1 = 7,‘:"2 < € (0,1). Furthermore, ||v||1 = Zj:Q Z’Zﬁ =1.

This implies that vy € intgn—1 A" 2. O

Lemma 5)is a straightforward generalization of Lemma 2]to the unit simplex in h-dimensions. This
admits the required factorization for our generalization of Theorem [4|to search spaces of size h.
Indeed, this factorization can be applied recursively to -, but we do not need this fact for the proof
of Theorem[7] Next, we generalize Condition [3|to handle & activation functions.

Preprint

Condition 6 (f,, is sufficiently far from a convex combination of { f5, }xc(ap\ i}) Let h be the size
of the search space. Then for L(fs,(W™*)) < L(f5,(W™)) and parameters ~,~" € intgn— Ah=2

ﬁ(fai (W*), kae[h]\{i} Ve Ok (W*)) > ‘C(faj (W*)a kae[h]\{j} Y10k (W*))

Condition []is a generalization of Condition [3|to an arbitrary number of activation functions. Here,
we obtain [0,7]",[0,7']" € bdgr A"~ using the factorizations of c in Lemma with respect to
; and ovj. We now go on to show our main result—Condition []is sufficient for a; < «; to hold.

Theorem 7 (Maximum o for activation search). Let h > 2 and under Assumptions[I} 2| and 3] let
L(fs,(W*)) < L(f5,(W™)). Then Condition@is sufficient for o; < a; to hold.

Proof. Beginning with L(f,,(W™)), we have

£(f0,(W*)) = SED[(fo (x, W) — 3]

w1 * *
= iEDX [(f(fi (XaW) - fda (X7W))2]
. . i
= §EDX <VO'Z'(W*TX) -V kz_l akak(W*TX)>
- 2
1
= §EDX (1—a;)vo;(W*'x) —v Z 0o (W*x)
I ke[r]\{i}
2
2) 1
(:) iEDX (1 — ai)VUi(W*TX) -V Z (1 - ai)'}'kak(W*Tx)
ke[r]\{i}

1
=(1- ai)QiED;@ vo(W*Tx) — v Z YroR(W*Tx)
ke[h\{i}
— 2 * *
- (1 - al) £(fUL(W)7fzke[h,]\{i} ’Ykgk(W))

where (1) holds by Assumption [3]and (2) holds by Assumption [2]and Lemma/[5] Applying this to
L(fs;(W*)) as well, we have

L(fo: (W) < L(fo,(WT))
= (1 - ai)Z‘C(fo'i (W*)? fzke[h]\{i} YOk (W*)) < (1 - a])Q‘C(fUJ (W*)7 kae[h]\(j}’Vk”k (W*))
Then Condition [6]implies the following

[-:(,fo'j (W*)7 fzk:e[h]\{j} Yk Ok (W*))

1-a)® < (1-a)°
= («) < (*.) E(fai(W*)vake[h]\{i) YOk (W*))

< (1-ay)?
= o5 < o
Thus Condition@is sufficient for a; < o;. O]

5 CONCLUSIONS AND FUTURE WORK

We have shown that in a particular setting of NAS with weight-sharing, activation function search
spaces of arbitrary size in two-layer networks, one can derive sufficient conditions under which
the optimal discrete architecture according to the shared weights is the same as the architecture
obtained by applying arg max discretization to the architecture weights. In search spaces of exactly
two activation functions, no sufficient condition is necessary.

Preprint

There are several clear extensions to this work. One of which arises by noting that our analysis does
not depend on properties of the activation functions themselves—we can easily generalize our anal-
ysis to search spaces over a much larger class of functions. Indeed, if we continue to assume that
we obtain optimal shared weights, we can generalize the analysis to include parameterized func-
tions including various types of convolutions, which are typical of NAS search spaces. Another
such extension is to consider more complex architectures such as the computation graphs featured
in Figureﬂ] or DARTS cells|Liu et al.| (2019)). However, issues may arise when dealing with nonlin-
earities, so extensions to computation graphs may have to be limited to deep linear networks. On the
other hand, all operations in standard NAS search spaces are 1-positively homogeneous, including
ReLU, max pooling, and all types of convolutions as they are linear (Roberts et al.|(2021) noted that
other NAS operations including average pooling, identity, and the zero operations are all essentially
special cases of convolutions), so this property might be useful as well. Extending this analysis to
computation graphs will require proving that in both layer composition, and in layer addition, the
architecture parameters factor together to some point in a higher-dimensional simplex. Using these
two arguments, we must show that arbitrary computation graphs can be factored such that the archi-
tecture parameters at each edge factor to a vector on a higher dimensional simplex where each vertex
corresponds to an architecture topology in the search space. Finally, we must show that choosing
the maximum point on this simplex over the entire search space is identical to locally choosing the
arg max at each edge. We leave this analysis to future work.

REFERENCES

Mikhail Khodak, Liam Li, Nicholas Roberts, Maria-Florina Balcan, and Ameet Talwalkar. A simple
setting for understanding neural architecture search with weight-sharing. In 7th ICML Workshop
on Automated Machine Learning, 2020. URL https://www.automl.org/wp—content/
uploads/2020/07/AutoML_2020_paper_46.pdfl

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
In Ryan P. Adams and Vibhav Gogate (eds.), Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference, volume 115 of Proceedings of Machine Learning Research, pp. 367—
377. PMLR, 22-25 Jul 2020. URL https://proceedings.mlr.press/v115/1i20c.
htmll

Liam Li, Mikhail Khodak, Nina Balcan, and Ameet Talwalkar. Geometry-aware gradient algorithms
for neural architecture search. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=MuSYkdlhxRP.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=SleYHoC5LFX.

Samet Oymak, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guarantees for neural
architecture search with train-validation split. In Marina Meila and Tong Zhang (eds.), Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, pp. 8291-8301. PMLR, 18-24 Jul 2021. URL |https:
//proceedings.mlr.press/v139/oymak2la.html.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 4095-4104. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.
press/v80/phaml8a.html.

Nicholas Roberts, Mikhail Khodak, Tri Dao, Liam Li, Christopher Re, and Ameet Talwalkar. Re-
thinking neural operations for diverse tasks. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=jedymjfb5LC.

Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating
the search phase of neural architecture search. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=H11oF2NFwr.

https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_46.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_46.pdf
https://proceedings.mlr.press/v115/li20c.html
https://proceedings.mlr.press/v115/li20c.html
https://openreview.net/forum?id=MuSYkd1hxRP
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://proceedings.mlr.press/v139/oymak21a.html
https://proceedings.mlr.press/v139/oymak21a.html
https://proceedings.mlr.press/v80/pham18a.html
https://proceedings.mlr.press/v80/pham18a.html
https://openreview.net/forum?id=je4ymjfb5LC
https://openreview.net/forum?id=H1loF2NFwr

	Introduction
	Related work
	Preliminaries, problem formulation, and context
	A geometric understanding of architecture parameters
	Two activation functions
	Three activation functions and the simplex interior factorization
	Beyond three activation functions

	Conclusions and future work

